Data Quality in Process Mining

Sareh Sadeghianasl

Queensland University of Technology (QUT), Australia

Sareh Sadeghianasl

Researcher in Process Mining and Data Quality

About Me

- BSc and MSc of Computer Software Engineering from FUM
- PhD candidate in Event Log Data Quality at QUT
- Experienced in process mining and data quality projects from Australian organizations
- BPM@QUT
 - Event Data Quality
 - Process Mining
 - Robotic Process Automation

Agenda

Today, we'll discuss ...

- Data quality: why does it matter?
- Event Log Imperfection Patterns
- Approaches to detect and repair
- A Gamified Crowdsourcing approach

Process Mining

Case ID	Activity	Timestamp
2033480	Arrive at ED	10/2/2020 13:45
2033480	Triage	10/2/2020 13:55
2033480	Dr visit	10/2/2020 14:20
2033480	Run test	10/2/2020 15:10
2033480	Admit	10/2/2020 17:01
2033480	Take medication	10/2/2020 17:50

@Sareh Sadeghianasl, BPM Group, QUT

Process mining use cases

What about DATA?

Data Quality: A Problem in the Real World

"Data quality and people remain the two main hurdles for widespread adoption" – Prof. Wil van der Aalst, 2020 (https://www.gartner.com/en/documents/3991229/market-guide-for-process-mining)

COSTLY

- Bad data costs the US economy \$3.1
- trillion per year (IBM)
- 84% of CEOs are concerned about the quality of the data that is basis for decisions (Forbes)

TIME-CONSUMING

 Recent XES survey: 60% of the effort is spent on data preparation for process mining (<u>https://www.tf-</u> <u>pm.org/resources/xes-standard/xes-2-0-</u> <u>workshop</u>)

•

Data Quality: Questions of Interest

- How do we **recognise** data quality issues in event data?
- How do we **assess** the quality?
- How can we quantify it's impact on process mining analyses?
- How do we **improve** the quality?
- How can we prevent the occurrence of data quality issues?

Event log structure

- The starting point of process mining
- Consists of a set of *events* recorded in a process of an organization
- Event: What happened for who and when
- Minimum (critical) elements

• Activity	Case id	Event id	Properties				
Activity			Timestamp Activity		Resource	Cost	 _
 Case id 	1	35654423	30-12-2010:11.02	register request	Pete	50	
		35654424	31-12-2010:10.06	examine thoroughly	Sue	400	 Pro
• Imestamp		35654425	05-01-2011:15.12	check ticket	Mike	100	 ins
		35654426	06-01-2011:11.18	decide	Sara	200	 / c
		35654427	07-01-2011:14.24	reject request	Pete	200	
	2	35654483	30-12-2010:11.32	register request	Mike	50	
sl. BPM Group, OUT		35654485	30-12-2010:12.12	check ticket	Mike	100	 10

Event Log Imperfection Patterns

- Form-based event capture 1)
- Inadvertent time travel 2)
- Unanchored event 3)
- Scattered event 4)
- Elusive case 5)
- 6) Scattered case
- **Collateral events** 7)
- **Polluted labels** 8)
- 9) **Distorted labels**
- **10)** Synonymous labels
- 11) Homonymous labels

r Holsted

ng event

Form-based event capture

	Episode ID		Event	Timestamp	Description	ı	
ID1 ID1			Primary Survey	2012-11-23 15:42:38			
		乄	Airway Clear	2012-11-23 15:42:38			
	ID1			2012-11-23 15:42:38			
			Primary Survey	2012-11-24 09:58:33		and all ha	ave
The	se events		Airway Clear	2012-11-24 09:58:33	t	timestam	p.
are recorded on a form				2012-11-24 09:58:33			
		Procedure 1		2012-11-24 09:58:33	Completed o	n	
					2012-11-24 0	6:58:34	

Andrews, R., Suriadi, S., Ouyang, C., & Poppe, E. (2018, October). Towards event log querying for data quality. In *OTM Confederated International Conferences'' On the Move to Meaningful Internet Systems''* (pp. 116-134). Springer, Cham.

Root cause

- Multiple events are captured through an e-form.
- They all have the same timestamp (the time the user clicks the 'save' button in the e-form)

- The actual ordering of events is lost
- Same-time events are considered as parallel in the discovered process model

Inadvertent time travel

Episode ID	Activity	$\operatorname{Timestamp}$	
ID1	Arrival first hospital	2011-09-08 00:30:00	 'Midnight'
ID1	Injury	2011-09-08 23:47:01	 problem. Time
			 portion correct but
ID1	Operation	2011-09-09 16:30:00	 date part in error.

Andrews, R., Suriadi, S., Ouyang, C., & Poppe, E. (2018, October). Towards event log querying for data quality. In OTM Confederated International Conferences" On the Move to Meaningful Internet Systems" (pp. 116-134). Springer,.

Root cause

- Wrong timestamp because of the proximity of the correct and incorrect value
- Human error
- E.g., events that happen just after midnight.

- Incorrect event order
- Incorrect process models discovered
- Inaccurate performance analysis

Unanchored event

		O	riginal Data			
	caseID	Activity	Timestamp	Description		
Event timestamps in	1234567	Progress note	01/09/2013 21:53:25			
dd/mm/www.format	1234567	Medical note	02/09/2013 01:11:25			
are imported		merapy	12/11/2013 16:08:23			
are imported in	1234567	Discharge letter	14/11/2013 16:43:29			
	Parsed Data					
	caseID	Activity	Timestamp	Description		
	1234567	Progress note	09/01/2013 21:53:25	Progress notes		
as mm/dd/yyyy		Modical note	09/02/2013 01:11:25			
format	1234567	Discharge letter	11/14/2013 16:08:23			
	1234567	Therapy	12/11/2013 16:43:29			

Root cause

• Timestamp format is not what the event log parsing tool expects

Effect

- Incorrect timestamp
- Incorrect process model
- Inaccurate performance analysis

Suriadi, S., Andrews, R., ter Hofstede, A. H., & Wynn, M. T. (2017). Event log imperfection patterns for process mining: Towards a systematic approach to cleaning event logs. *Information systems*, *64*, 132-150.

Collateral events

Andrews, R., Suriadi, S., Ouyang, C., & Poppe, E. (2018, October). Towards event log querying for data quality. In *OTM Confederated International Conferences*" *On the Move to Meaningful Internet Systems*" (pp. 116-134). Springer, Cham.

Root cause

- Multiple low-level activities with very close timestamps
 - Recorded by different systems
 - Fired by a system when an event occurs

- Overly complex process models
- Hinders the extraction of meaningful conclusions

Polluted labels

CaseID	Activity	Timestamp				
xxxx	Notific	ation of Loss - AA	a xxxx-xx-xx xx:xx:xx			
xxxx	Notification of Loss – BBBB Incident No. bbbb yyyy-yy-yy yy:yy:yy					
xxxx	Notific	ation of Loss – CC	CCC Incident No. cccc	ZZZZ-ZZ-ZZ ZZ:ZZ:ZZ		
••••	Notific	ation of Loss – DI	DDD <u>Incident No</u> . ddo	bt		
Immutat text	ole	Mutable text	Immutable text	Mutable text		

Root cause:

• Free-text data entry (with a recommended label)

Effect:

- Overly complex process models
- Models over-fitting event logs in conformance checking

Suriadi, S., Andrews, R., ter Hofstede, A. H., & Wynn, M. T. (2017). Event log imperfection patterns for process mining: Towards a systematic approach to cleaning event logs. *Information systems*, *64*, 132-150.

Distorted labels

CaseID	Activity	Timestamp	
1234567	a/w inv to cls	xxxx-xx-xx xx:xx:xx	
8912345	a/w inv to cls.	уууу-уу-уу уу:уу:уу	
1234567	XX – Further Information Required	ZZZZ-ZZ-ZZ ZZ:ZZ:ZZ	
8912345	XX – Further Infomation Required		

Suriadi, S., Andrews, R., ter Hofstede, A. H., & Wynn, M. T. (2017). Event log imperfection patterns for process mining: Towards a systematic approach to cleaning event logs. *Information systems*, *64*, 132-150.

Root cause

• Free-text data entry

- Similar to polluted labels
- Activities that are the same are treated differently in
 - Discovery
 - Conformance
 - Performance analysis

Synonymous labels

Hospital A Event Log								
CaseID	Activity		Activity Timestamp					
1234567	Medical Assign	_←	7/9/2013 14:50:30	Seen by phys	ician			
					-	votactically		
1234567	Troponin	Troponin 7		Blood test	د dif	ferent labe		
					but	semantica		
		Hosp	oital B Event Log		sim	ilar activiti		
CaseID	Activity		Timestamp	Description				
1234567	DrSeen	~	7/9/2013 00:52:25	Seen by phys	ician			
8912345	Blood test - Troponin		7/9/2013 02:04:51	Blood test				

Andrews, R., Suriadi, S., Ouyang, C., & Poppe, E. (2018, October). Towards event log querying for data quality. In *OTM Confederated International Conferences'' On the Move to Meaningful Internet Systems''* (pp. 116-134). Springer.

Root cause

- Free-text data entry
- Data from different systems

- Similar to polluted, and distorted labels
- Activities that are the same are treated differently in
 - Discovery
 - Conformance
 - Performance analysis

Homonymous labels

CaseID	Activity	Timestamp	Descriptio	n	
1234567	Triage Assessment	06/09/2013 12:33:17			
1234567	Progress Note	06/09/2013 13:10:23		Syntactically t	he
1234567	Discharged	06/09/2013 13:15:00		semantically	out v
1234567	Triage Assessment	13/09/2013 07:24:36		different activit	, ties.
1234567	Triage Assessment 🗲	13/09/2013 07:28:51			

Andrews, R., Suriadi, S., Ouyang, C., & Poppe, E. (2018, October). Towards event log querying for data quality. In OTM Confederated International Conferences" On the Move to Meaningful Internet Systems" (pp. 116-134). Springer, Cham.

Root cause

 They are usually captured by the system, e.g. when a triage form is viewed or edited

- Different activities are grouped into one in:
 - Discovery
 - Conformance
 - Performance analysis

Scattered event

	$Event \ \log \ 1$										
caseID	Activity	Timestamp	Description								
1234567	Surgical Procedure	21/09/2011 08:11:25	Stent insertion								
				These							
1234567	Procedure start-time	21/09/2011 08:11:25	0:2011092010480000:0.000000:0:0	attribute							
1234567	Procedure end-time	21/09/2011 08:11:25	0:2011092010590000:0:0.000000:0:0	values							

$\overline{\rm Event} \log 1$									
caseID	Activity	Timestamp	Description	car	n be				
1234567	Stent insertion	20/09/2011 10:59:00	• • • • • • • • • • • • • • • • • • •	used	to				
				constr	uct a				
				new e	vent.				

Suriadi, S., Andrews, R., ter Hofstede, A. H., & Wynn, M. T. (2017). Event log imperfection patterns for process mining: Towards a systematic approach to cleaning event logs. *Information systems*, *64*, 132-150.

Root cause

 Free-text data fields, manual data entry

- Missing information that could enrich insights from a process mining task
- Incomplete process models

Scattered case

Root cause:

 Event data recorded in multiple systems

Effect:

- Information that could enrich insights from a process mining task
- Incomplete process models

Suriadi, S., Andrews, R., ter Hofstede, A. H., & Wynn, M. T. (2017). Event log imperfection patterns for process mining: Towards a systematic approach to cleaning event logs. *Information systems*, *64*, 132-150.

@Sareh Sadeghianasl, BPM Group, QUT

Elusive case

Journey Planner Table

						1	venicie	Even
Journey ID	Vehicle	Start	End	Dispatch	End		Van1	Enter
				Time	Time		Van1	Igniti
Journey001	Van1	Area A	Area X	7 Feb 2011	7 Feb 2011		Van1	Igniti
				08:00:00	18:00:00		Van1	Exit
Lournov 002	Von 1	Arres D	A	9 E-h 2011	9 E-h 2011		Van1	
Journey002	vani	Area B	Area Z	8 Feb 2011 08:00:00	8 Feb 2011 10:00:00		Van1	Enter
						J	Van1	Igniti
						\rightarrow	Van1	Igniti
						(Van1	Exit
							Van1	
						ſ	Van1	Enter
L						\rightarrow	Van1	Igniti
							Van1	Igniti

	GPS Event Log					
	Vehicle	Event Type	Timestamp			
	Van1	Enter area A	2011-02-07 08:13:00			
	Van1	Ignition off	2011-02-07 08:15:23			
	Van1	Ignition on	2011-02-07 09:01:39			
	Van1	Exit area A	2011-02-07 09:02:01			
	Van1					
	Van1	Enter area X	2011-02-07 15:54:08			
	Van1	Ignition off	2011-02-07 15:56:23			
	Van1	Ignition on	2011-02-07 17:25:42			
	Van1	Exit area X	2011-02-07 17:26:15			
	Van1					
	Van1	Enter area B	2011-02-08 08:25:45			
	Van1	Ignition off	2011-02-08 08:26:56			
	Van1	Ignition on	2011-02-08 08:59:17			
	Van1	Exit area B	2011-02-08 09:03:12			

Root cause

 Event data derived from a system that is not process-aware (e.g. a GPS tracking system)

Effect

• Prevents conducting process mining analysis

Suriadi, S., Andrews, R., ter Hofstede, A. H., & Wynn, M. T. (2017). Event log imperfection patterns for process mining: Towards a systematic approach to cleaning event logs. *Information systems*, *64*, 132-150.

Detection and repair: Timestamp issues

Event automaton (Conforti et at., 2020)

Common ordering in the log used for incorrect ordered ones

Order anomaly, statistical anomaly (Dixit et al. 2018)

Identify candidates of incorrect ordered events and deploy user input to detect and repair them

Probability distribution function (Van der Aa et al., 2020)

Over all possible total orders of known partial orders of events

Timestamp quality metrics (Fischer et al., 2020)

Accuracy, completeness, consistency, uniqueness

Log, trace, activity, and event level

Detection and repair: Label issues

Same syntax, different semantic (Homonymous)

- Process model level
 - Labels with different neighbours in the model (Vazquez-Barreiros et al., 2015; Sanchez-Charle et al., 2016)
- Event log level
 - Using timestamps of event (Tax et al., 2017)
 - Using control flow of events (Lu et al., 2016)

Different syntax, same semantics (Synonymous, Polluted, Distorted)

- Process model/event log level
 - Using a domain ontology or dictionary (Cairns et al., 2014; Koschmider et al., 2015; Pittke et al., 2015)

Imperfect Activity Labels

Identifying Imperfect label candidates

Resource distance of a and b: The difference between their resource PDF

$$\mathcal{R} = (r_1, r_2, r_3, r_4, r_5)$$

$$D_{re}(a,b) = \frac{2}{2} = 1$$

Sadeghianasl, S. Hofstede, A.H.M, Wynn, M. Suriadi, S.: A Contextual Approach to Detecting and Repairing Synonymous and Polluted Activity Labels in Process Event Logs, *International Conference on Cooperative Information Systems (CoopIS)*, Rhodes, Greece, 2019, pp. 76-94

Problem of computational approaches

Computational approaches: low effectiveness in real-life scenarios (Klinkmüller & Webber, 2021; Rodríguez et al, 2016)

Domain knowledge: required Domain expert: in-demand, expensive, and time-poor (Scibona, 2018; Wohlgenannt et al, 2016) Data cleaning: "the most time consuming and the least enjoyable data science task" (Gil, 2016)

27

Our solution

Crowdsourcing

A diversity of knowledge of a large group of people (Howe, 2006)

No restriction to the physical location of domain experts

Gamification

Using game elements in non-gaming system (Deterding et al., 2011)

Increasing user engagement \rightarrow providing better advice

Sadeghianasl, S. Hofstede, A.H.M, Suriadi, S. Turkay, S.: Collaborative and Interactive Detection and Repair of Activity Labels in Process Event Logs, *International Conference on Process Mining (ICPM)*, Padua, Italy, 2020, pp. 41-48

Motivational Drives

Based on the Octalysis framework for gamification design (Chou, 2019)

Sadeghianasl, S. Hofstede, A.H.M, Suriadi, S. Turkay, S.: Collaborative and Interactive Detection and Repair of Activity Labels in Process Event Logs, *International Conference on Process Mining (ICPM)*, Padua, Italy, 2020, pp. 41-48

The Quality Guardian Framework

The Quality Guardian Games

-	2	Select	t all optio ving optio	ns that hav	e the s	ame meaning	as "Clear	Inv" from t	he			
		296									0%	
Chan	Change Final Invoice Indicator		0%	0% Clear Invoice		Invoice	99% 99%	SRM:	SRM: Transaction Completed		0% 0%	
11	0%	1 out of 21	0%	97197	6.09%	• 21 out of 21	95%	8	0%	1 out of 21	3%	
	Remove Invoice		68% 99%		Eliminate Inv		65% 99%	Clr Invoice			78% 99%	
38879	2,44%	• 16 out of 21	99% 95%	19439	1.22%	• 14 out of 21	99% 94%	19439	1,22%	• 17 out of 21	99% 95%	
			0%			e 1 F 1	0%				0%	
	SRM: Inc	complete	0%	Char	ige kejei	ction indicator	0%		SRIVI	Held	0%	
6	0%	0 out of 21	0%	2	0%	• 0 out of 21	0%	6	0%	0 out of 21	0%	

Sadeghianasl, S. Hofstede, A.H.M, Suriadi, S. Turkay, S.: Collaborative and Interactive Detection and Repair of Activity Labels in Process Event Logs, *International Conference on Process Mining (ICPM)*, Padua, Italy, 2020, pp. 41-48 **Sadeghianasl, S**. Hofstede, A.H.M, Wynn, M. Turkay, S.: Gamifying Activity Label Repair in Process Event Logs, Submitted to an International Journal.

A7 💿 🔶 32 🔮 🙎

Select all options that have the same meaning as "Clear Inv" from the following options.

Topic: Claim Review Activities

Drag and drop cards into groups. You can add more groups. All cards in a group should have the same meaning. Then click on group names to rename them. The group names should represent the meaning of their cards.

Group 1	I Feedback	×
---------	------------	---

How many players have grouped these terms together so far?

6 out of 8

The absolute and relative frequencies of these terms in data:

URGENT REVIEW REQUEST: 1, 0%. please review asap: 1, 0%.

Average context Similarities:

URGENT REVIEW REQUEST, please review asap: 37% 😯

Gamifying Activity Ontology Creation

Formalize domain knowledge about activities Semantic relations Synonymy Antonymy Hyponymy (kind-of) Meronymy (Part-of) X

Can be used for activity label repair

Sadeghianasl, S. Hofstede, A.H.M, Wynn, M. Turkay, S. Myers, T.:Process activity ontology learning from event logs through gamification, IEEE Access, 9, 165865-165880.

Spin the wheels to reveal a question. Then answer that by selecting the semantic relation between the two activity labels. Overall, you have 6 attempts to spin, answer, and earn points.

Results of Activity Quality Improvement

Sadeghianasl, S. Hofstede, A.H.M, Suriadi, S. Turkay, S.: Collaborative and Interactive Detection and Repair of Activity Labels in Process Event Logs, *International Conference on Process Mining (ICPM)*, Padua, Italy, 2020, pp. 41-48

Sadeghianasl, S. Hofstede, A.H.M, Wynn, M. Turkay, S.: Gamifying Activity Label Repair in Process Event Logs, Submitted to an International Journal.

Labels

Results of User Engagement

Survey Question	Assessed Feature (Sweetser and Wyeth, 2005)				
Q1	The clarity of the game goals				
Q2	The usefulness of the feedback				
Q3	The ease of use				
Q4	The usefulness of knowing crowd views				
Q5	The ability to control game actions and interface				
Q6	The overall engagement				
Q7	The knowledge development				
Q8	The required concentration				

Survey question

Sadeghianasl, S. Hofstede, A.H.M, Suriadi, S. Turkay, S.: Collaborative and Interactive Detection and Repair of Activity Labels in Process Event Logs, *International Conference on Process Mining (ICPM)*, Padua, Italy, 2020, pp. 41-48

Summary

Event log imperfection patternsWhat are they? Root causes/ effects

Detect and repair quality issues in event logs - Timestamp, label issues

Gamification solution to detecting and repairing label quality issues

Goals

- Convey the importance of data quality
- To prevent them, and to understand the effect they can have on process mining analysis
- Make reliable decision for our organizations

- Acknowledgement
 - QUT BPM group

Sareh Sadeghianasl, Queensland University of Technology (QUT), Australia s.sadeghianasl@qut.edu.au

- 1. Suriadi, S., Andrews, R., ter Hofstede, A. H., & Wynn, M. T. (2017). Event log imperfection patterns for process mining: Towards a systematic approach to cleaning event logs. *Information systems*, *64*, 132-150.
- 2. Sadeghianasl, S. Hofstede, A.H.M, Wynn, M. Suriadi, S.: A Contextual Approach to Detecting and Repairing Synonymous and Polluted Activity Labels in Process Event Logs, *International Conference on Cooperative Information Systems (CoopIS)*, Rhodes, Greece, 2019, pp. 76-94
- 3. Sadeghianasl, S. Hofstede, A.H.M, Suriadi, S. Turkay, S.: Collaborative and Interactive Detection and Repair of Activity Labels in Process Event Logs, *International Conference on Process Mining (ICPM)*, Padua, Italy, 2020, pp. 41-48
- 4. Sadeghianasl, S. Hofstede, A.H.M, Wynn, M. Turkay, S. Myers, T.:Process activity ontology learning from event logs through gamification, IEEE Access, 9, 165865-165880.
- 5. Andrews, R., Suriadi, S., Ouyang, C., & Poppe, E. (2018, October). Towards event log querying for data quality. In OTM Confederated International Conferences" On the Move to Meaningful Internet Systems" (pp. 116-134). Springer, Cham.
- 6. Andrews, Robert, Fahame Emamjome, Arthur HM ter Hofstede, and Hajo A. Reijers. "Root-cause analysis of process-data quality problems." *Journal of Business Analytics* (2021): 1-25.
- 7. P. M. Dixit, S. Suriadi, R. Andrews, M. T. Wynn, A. H. M. ter Hofstede, J. C. A. M. Buijs, and W. M. P. van der Aalst, "Detection and Interactive Repair of Event Ordering Imperfection in Process Logs", in *International Conference on Advanced Information Systems* Engineering (CAISE), pp. 274–290, Tallinn, Estonia, Jun. 2018
- 8. Conforti, Raffaele, Marcello La Rosa, Arthur HM Ter Hofstede, and Adriano Augusto. "Automatic repair of same-timestamp errors in business process event logs." In *International Conference on Business Process Management*, pp. 327-345. Springer, Cham, 2020.
- 9. Fischer, Dominik Andreas, Kanika Goel, Robert Andrews, Christopher Gerhard Johannes van Dun, Moe Thandar Wynn, and Maximilian Röglinger. "Enhancing event log quality: detecting and quantifying timestamp imperfections." In *International Conference on Business Process Management*, pp. 309-326. Springer, Cham, 2020.

- 9. Van der Aa, Han, Henrik Leopold, and Matthias Weidlich. "Partial order resolution of event logs for process conformance checking." *Decision Support Systems* 136 (2020): 113347.
- 10. J. de San Pedro and J. Cortadella, "Discovering Duplicate Tasks in Transition Systems for the Simplification of Process Models", in *International Conference on Business Process Management (BPM)*, ser. Lecture Notes in Computer Science, M. La Rosa, P. Loos, and O. Pastor, Eds., vol. 9850, pp. 108–1124. Rio de Janeiro, Brazil: Springer, Sep. 2016.
- 11. B. V´azquez-Barreiros, M. Mucientes, and M. Lama, "Mining Duplicate Tasks from Discovered Processes", in *International Workshop on Algorithms & Theories for the Analysis of Event Data (ATAED)*, ser. CEUR Workshop Proceedings, W. M. P. van der Aalst, R. Bergenthum, and J. Carmona, Eds., vol. 1371, pp. 78–82. Brussels, Belgium: CEUR-WS.org, Jun. 2015.
- 12. X. Lu, D. Fahland, F. J. van den Biggelaar, and W. M. van der Aalst, "Handling Duplicated Tasks in Process Discovery by Refining Event Labels", in *International Conference on Business Process Management (BPM)*, ser. Lecture Notes in Computer Science, M. La Rosa, P. Loos, and O. Pastor, Eds., vol. 9850, pp. 90–107. Rio de Janeiro, Brazil: Springer, Sep. 2016.
- 13. N. Tax, E. Alasgarov, N. Sidorova, W. M. P. van der Aalst, and R. Haakma, "Generating Time-Based Label Refinements to Discover More Precise Process Models", Eindhoven University of Technology, Philips Research, Tech. Rep., Oct. 2017, <u>https://arxiv.org/pdf/1705.09359.pdf</u>, Accessed at 2018.8.2.
- 14. Cairns, Awatef Hicheur, Joseph Assu Ondo, Billel Gueni, Mehdi Fhima, Marcel Schwarcfeld, Christian Joubert, and Nasser Khelifa. "Using semantic lifting for improving educational process models discovery and analysis." In *SIMPDA*, pp. 150-161. 2014.
- 15. Koschmider, Agnes, Meike Ullrich, Antje Heine, and Andreas Oberweis. "Revising the vocabulary of business process element labels." In International Conference on Advanced Information Systems Engineering, pp. 69-83. Springer, Cham, 2015.
- 16. Pittke, Fabian, Henrik Leopold, and Jan Mendling. "Automatic detection and resolution of lexical ambiguity in process models." *IEEE Transactions on Software Engineering* 41, no. 6 (2015): 526-544.