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• Process mining

• Data quality: why does it matter?

• Event Log Imperfection Patterns

• Approaches to detect and repair

• A Gamified Crowdsourcing approach
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Agenda
Today, we’ll discuss …



Process Mining
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Process 
Mining

Process 
Management

Data Mining

Visualization

https://www.oaidocs.com/2019/10/25/what-is-a-trauma-doctor/

Case ID Activity Timestamp

2033480 Arrive at ED 10/2/2020 13:45

2033480 Triage 10/2/2020 13:55

2033480 Dr visit 10/2/2020 14:20

2033480 Run test 10/2/2020 15:10

2033480 Admit 10/2/2020 17:01

2033480 Take medication 10/2/2020 17:50
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Activity
Arrive at ED

Triage

Dr visit

Discharge

Run test

Admit

Take 
medication
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Information 
System
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Process mining use cases
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Insurance Healthcare Education Livestock

- Best practice in claim 
processing

‐ Factors influencing 
performance

- Different patient journey 
for similar symptoms?

‐ Road trauma process, 
conformance to Trauma 
By-pass Guidelines

- Timely completion of 
PhD journey (leave, 
extension, examination)

- From farm to packed 
meat, conformance to 
food safety guidelines



What about DATA?
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Data Quality: A Problem in the Real World

“Data quality and people remain the two main hurdles for widespread 
adoption” – Prof. Wil van der Aalst, 2020 (https://www.gartner.com/en/documents/3991229/market-guide-for-process-mining)
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• Bad data costs the US economy $3.1 
trillion per year (IBM)

• 84% of CEOs are concerned about 
the quality of the data that is basis 
for decisions (Forbes)

• Recent XES survey: 60% of the effort 
is spent on data preparation for 
process mining (https://www.tf-
pm.org/resources/xes-standard/xes-2-0-
workshop)

COSTLY TIME-CONSUMING

https://www.gartner.com/en/documents/3991229/market-guide-for-process-mining
https://www.tf-pm.org/resources/xes-standard/xes-2-0-workshop


Data Quality: Questions of Interest

• How do we recognise data quality issues in event data?
• How do we assess the quality?
• How can we quantify it’s impact on process mining analyses?
• How do we improve the quality?
• How can we prevent the occurrence of data quality issues?
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Look Ahead

Data Quality 
Metrics

Anticipate effects on process 
mining, e.g. parallelism where 
there should be sequence

Look Back

Reason about causes, 
what can be done to fix 

quality issuesETL

Figure developed by R. Andrews @QUT



Event log structure
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• The starting point of process mining
• Consists of a set of events recorded in a process of an organization
• Event:  What happened for who and when
• Minimum (critical) elements

• Activity

• Case id
• Timestamp Process 

instance
/ case



Event Log Imperfection Patterns

1) Form-based event capture
2) Inadvertent time travel
3) Unanchored event
4) Scattered event
5) Elusive case
6) Scattered case
7) Collateral events
8) Polluted labels
9) Distorted labels
10) Synonymous labels
11) Homonymous labels
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A systematic view of 
commonly found quality 
issues in an event log



Form-based event capture
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{
… and all have 

the same 
timestamp.

}
These events 
are recorded 
on a form …

Andrews, R., Suriadi, S., Ouyang, C., & Poppe, E. (2018, October). Towards event log querying for data quality. In OTM 
Confederated International Conferences" On the Move to Meaningful Internet Systems" (pp. 116-134). Springer, Cham.

Root cause
• Multiple events are captured 

through an e-form.
• They all have the same 

timestamp (the time the user 
clicks the ‘save’ button in the 
e-form)

Effect
• The actual ordering of events is 

lost
• Same-time events are

considered as parallel in the 
discovered process model

Figure developed by R. Andrews @QUT



Inadvertent time travel
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Andrews, R., Suriadi, S., Ouyang, C., & Poppe, E. (2018, October). Towards event log querying for data quality. In OTM 
Confederated International Conferences" On the Move to Meaningful Internet Systems" (pp. 116-134). Springer,.

Root cause
• Wrong timestamp because of the 

proximity of the correct and 
incorrect value

• Human error
• E.g., events that happen just after 

midnight.

Effect
• Incorrect event order
• Incorrect process models 

discovered
• Inaccurate performance analysis

‘Midnight’ 
problem. Time 

portion correct but 
date part in error.

Figure developed by R. Andrews @QUT



Unanchored event
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Suriadi, S., Andrews, R., ter Hofstede, A. H., & Wynn, M. T. (2017). Event log imperfection patterns for process mining: 
Towards a systematic approach to cleaning event logs. Information systems, 64, 132-150.

Root cause
• Timestamp format is not what 

the event log parsing tool expects

Effect
• Incorrect timestamp
• Incorrect process model
• Inaccurate performance analysis

Event timestamps in 
dd/mm/yyyy format 

are imported ... {
… as mm/dd/yyyy

format {

Figure developed by R. Andrews @QUT



Collateral events
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Andrews, R., Suriadi, S., Ouyang, C., & Poppe, E. (2018, October). Towards event log querying for data 
quality. In OTM Confederated International Conferences" On the Move to Meaningful Internet Systems" (pp. 
116-134). Springer, Cham.

Root cause
• Multiple low-level activities with 

very close timestamps
• Recorded by different systems
• Fired by a system when an 

event occurs

Effect
• Overly complex process models
• Hinders the extraction of

meaningful conclusions

Figure developed by R. Andrews @QUT

All events refer to 
single process step 

‘Pay Insurance Claim 
Assessor’.

}



Polluted labels
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Suriadi, S., Andrews, R., ter Hofstede, A. H., & Wynn, M. T. (2017). Event log imperfection patterns for process 
mining: Towards a systematic approach to cleaning event logs. Information systems, 64, 132-150.

Root cause:
• Free-text data entry (with a 

recommended label)

Effect:
• Overly complex process models 
• Models over-fitting event logs in 

conformance checking

Figure developed by R. Andrews @QUT

Immutable
text

Mutable
text

Immutable
text

Mutable
text

CaseID Activity Timestamp ...

xxxx Notification of Loss - AAAA Incident No. aaaa xxxx-xx-xx xx:xx:xx ....

xxxx Notification of Loss – BBBB Incident No. bbbb yyyy-yy-yy yy:yy:yy ....

xxxx Notification of Loss – CCCC Incident No. cccc zzzz-zz-zz zz:zz:zz ....

…….. Notification of Loss – DDDD Incident No. dddd ....



Distorted labels
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Suriadi, S., Andrews, R., ter Hofstede, A. H., & Wynn, M. T. (2017). Event log imperfection patterns for process 
mining: Towards a systematic approach to cleaning event logs. Information systems, 64, 132-150.

Root cause
• Free-text data entry

Effect
• Similar to polluted labels
• Activities that are the same are

treated differently in
• Discovery
• Conformance
• Performance analysis

Figure developed by R. Andrews @QUT

CaseID Activity Timestamp ...

1234567 a/w inv to cls xxxx-xx-xx xx:xx:xx ....

8912345 a/w inv to cls. yyyy-yy-yy yy:yy:yy ....

1234567 XX – Further Information Required zzzz-zz-zz zz:zz:zz ....

8912345 XX – Further Infomation Required …. ....



Synonymous labels
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Andrews, R., Suriadi, S., Ouyang, C., & Poppe, E. (2018, October). Towards event log querying for data quality. In OTM 
Confederated International Conferences" On the Move to Meaningful Internet Systems" (pp. 116-134). Springer.

Root cause
• Free-text data entry
• Data from different systems

Effect
• Similar to polluted, and 

distorted labels
• Activities that are the same are

treated differently in
• Discovery
• Conformance
• Performance analysis

Figure developed by R. Andrews @QUT

Hospital A Event Log

CaseID Activity Timestamp Description

1234567 Medical Assign 7/9/2013 14:50:30 Seen by physician

…. …. ….. ....

1234567 Troponin 7/9/2013 15:39:32 Blood test

….. …. …. ....

Hospital B Event Log

CaseID Activity Timestamp Description

1234567 DrSeen 7/9/2013 00:52:25 Seen by physician

8912345 Blood test - Troponin 7/9/2013 02:04:51 Blood test

…. …. …. ....

Syntactically 
different labels, 
but semantically 
similar activities.



Homonymous labels
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Andrews, R., Suriadi, S., Ouyang, C., & Poppe, E. (2018, October). Towards event log querying for data quality. In OTM 
Confederated International Conferences" On the Move to Meaningful Internet Systems" (pp. 116-134). Springer, Cham.

Root cause
• They are usually captured by the 

system, e.g. when a triage form is 
viewed or edited

Effect
• Different activities are grouped 

into one in:
• Discovery
• Conformance
• Performance analysis

Figure developed by R. Andrews @QUT

CaseID Activity Timestamp Description

1234567 Triage Assessment 06/09/2013 12:33:17 ....

1234567 Progress Note 06/09/2013 13:10:23 ....

1234567 Discharged 06/09/2013 13:15:00 ....

1234567 Triage Assessment 13/09/2013 07:24:36 ....

1234567 Triage Assessment 13/09/2013 07:28:51 ....

Syntactically the 
same labels, but 

semantically 
different activities.



Scattered event
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Suriadi, S., Andrews, R., ter Hofstede, A. H., & Wynn, M. T. (2017). Event log imperfection patterns for 
process mining: Towards a systematic approach to cleaning event logs. Information systems, 64, 132-150.

Root cause
• Free-text data fields, manual data 

entry

Effect
• Missing information that could 

enrich insights from a process 
mining task

• Incomplete process models

Figure developed by R. Andrews @QUT

These 
attribute 
values …

… can be 
used to 

construct a 
new event.



Scattered case
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Suriadi, S., Andrews, R., ter Hofstede, A. H., & Wynn, M. T. (2017). Event log imperfection patterns for process mining: 
Towards a systematic approach to cleaning event logs. Information systems, 64, 132-150.

Root cause:
• Event data recorded in multiple 

systems

Effect:
• Information that could enrich 

insights from a process mining 
task

• Incomplete process models

Figure developed by R. Andrews @QUT

Apparently 2 
distinct ‘caseID’s’ 

…

… that can be 
linked by a 

common ‘record 
number’.

… scattered 
across multiple 

sources ...



Elusive case
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Suriadi, S., Andrews, R., ter Hofstede, A. H., & Wynn, M. T. (2017). Event log imperfection patterns for process mining: 
Towards a systematic approach to cleaning event logs. Information systems, 64, 132-150.

Root cause
• Event data derived from a system 

that is not process-aware (e.g. a 
GPS tracking system)

Effect
• Prevents conducting process 

mining analysis

Figure developed by R. Andrews @QUT



Detection and repair: Timestamp issues

Event automaton (Conforti et at., 2020)

Common ordering in the log used for incorrect ordered ones

Order anomaly, statistical anomaly (Dixit et al. 2018)

Identify candidates of incorrect ordered events and deploy user input to detect and repair 
them

Probability distribution function (Van der Aa et al., 2020)

Over all possible total orders of known partial orders of events

Timestamp quality metrics (Fischer et al., 2020)

Accuracy, completeness, consistency, uniqueness
Log, trace, activity, and event level
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Detection and repair: Label issues
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• Process model level
• Labels with different neighbours in the model (Vazquez-Barreiros et al., 2015; Sanchez-Charle et al., 2016)

• Event log level
• Using timestamps of event (Tax et al., 2017)
• Using control flow of events (Lu et al., 2016)

Same syntax, different semantic (Homonymous)

• Process model/event log level
• Using a domain ontology or dictionary (Cairns et al., 2014; Koschmider et al., 2015; Pittke et al., 2015) 

Different syntax, same semantics (Synonymous, Polluted, Distorted)



Imperfect Activity Labels
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Case ID Activity

1 Register request

1 examine thoroughly

1 Check ticket

1 …

2 New application

2 Check pass

2 decide

2 …

System 1

System 2

In prescriptive model:  “Register request”

Deviation: “New application”

Conformance checking

What is the average time required for 

registering a new application?

Performance analysis

Register
request

New 
application

Process discovery



Activity

Resource
Who is typically performing this activity?

Control Flow
At which stage of the process is it executed?

Time
When is it usually executed? How long 
does it take?

Data
What data is exchanged during this activity?

Activity Context

Sadeghianasl, S. Hofstede, A.H.M, Wynn, M. Suriadi, S.: A Contextual Approach to Detecting 
and Repairing Synonymous and Polluted Activity Labels in Process Event Logs, International 
Conference on Cooperative Information Systems (CoopIS), Rhodes, Greece, 2019, pp. 76-94 26

Resource distance of a and b: 
The difference between their resource PDF

ℛ = ( 𝑟𝑟1 , 𝑟𝑟2 , 𝑟𝑟3 , 𝑟𝑟4 , 𝑟𝑟5 )

𝑎𝑎 0 0 0 0.5 0.5

𝑏𝑏 0.25 0.5 0.25 0 0

𝐷𝐷𝑟𝑟𝑟𝑟 𝑎𝑎, 𝑏𝑏 =
2
2 = 1

@Sareh Sadeghianasl, BPM Group, QUT

Identifying Imperfect label candidates



Problem of computational approaches

27

Domain knowledge: required
Domain expert: in-demand, 
expensive, and time-poor 
(Scibona, 2018; Wohlgenannt et al, 
2016)

Computational approaches: 
low effectiveness in real-life 
scenarios (Klinkmüller & Webber, 
2021; Rodríguez et al, 2016)

Data cleaning: “the most time consuming 
and the least enjoyable data science task” 
(Gil, 2016)

Cleaning and 
organizing 
data, 60%

Building 
training sets, 

3%

Collecting 
data sets, 

19%

Mining data 
for patterns, 

9%

Refining 
algorithms, 

4%

Other, 5%
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https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/?sh=294775a66f63


Our solution

Crowdsourcing
A diversity of knowledge of a large group of 
people (Howe, 2006)

No restriction to the physical location of 
domain experts

Gamification
Using game elements in non-gaming system 
(Deterding et al., 2011)

Increasing user engagement → providing better 
advice

28@Sareh Sadeghianasl, BPM Group, QUT
Sadeghianasl, S. Hofstede, A.H.M, Suriadi, S. Turkay, S.: Collaborative and Interactive Detection and Repair of Activity 
Labels in Process Event Logs, International Conference on Process Mining (ICPM), Padua, Italy, 2020, pp. 41-48



Motivational Drives 
Based on the Octalysis framework for gamification design (Chou, 2019)

Development & 
Accomplishment

Overcoming challenges, 
achieving goals and mastery

Points, badges, progress bars

Epic Meaning & Calling

Doing something bigger than 
themselves, e.g. saving the 
world

Narration

Social Influence & 
Relatedness

Follow a social norm, i.e. what 
every one else is doing

Social reports, leaderboard

29
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Sadeghianasl, S. Hofstede, A.H.M, Suriadi, S. Turkay, S.: Collaborative and Interactive Detection and Repair of Activity 
Labels in Process Event Logs, International Conference on Process Mining (ICPM), Padua, Italy, 2020, pp. 41-48
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The Quality Guardian Framework

Question bank

User 
Profile

Suggested repairsScore calculation

Vocabulary 
questions 

Vocabulary 
answers

Repair 
selection

Gamified System

Question 
generation

Domain experts

Pre-game Post-game
Game play

Event 
log

Repaired 
event log

Sadeghianasl, S. Hofstede, A.H.M, Suriadi, S. Turkay, S.: Collaborative and Interactive Detection and Repair of Activity 
Labels in Process Event Logs, International Conference on Process Mining (ICPM), Padua, Italy, 2020, pp. 41-48



The Quality Guardian Games

Sadeghianasl, S. Hofstede, A.H.M, Suriadi, S. Turkay, S.: 
Collaborative and Interactive Detection and Repair of Activity 
Labels in Process Event Logs, International Conference on Process 
Mining (ICPM), Padua, Italy, 2020, pp. 41-48

Sadeghianasl, S. Hofstede, A.H.M, Wynn, M. Turkay, S.: Gamifying 
Activity Label Repair in Process Event Logs, Submitted to an 
International Journal.
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Gamifying Activity Ontology Creation

Formalize domain 
knowledge about 
activities

Semantic relations

Synonymy

Antonymy

Hyponymy (kind-of)

Meronymy (Part-of)

Can be used for 
activity label 
repair

Sadeghianasl, S. Hofstede, A.H.M, Wynn, M. Turkay, 
S. Myers, T.:Process activity ontology learning from 
event logs through gamification, IEEE Access, 9, 
165865-165880.
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Results of Activity Quality Improvement
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Sadeghianasl, S. Hofstede, A.H.M, Suriadi, S. Turkay, S.: 
Collaborative and Interactive Detection and Repair of Activity 
Labels in Process Event Logs, International Conference on 
Process Mining (ICPM), Padua, Italy, 2020, pp. 41-48

Sadeghianasl, S. Hofstede, A.H.M, Wynn, M. Turkay, S.: Gamifying Activity Label Repair in Process 
Event Logs, Submitted to an International Journal.
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Survey Question Assessed Feature (Sweetser and Wyeth, 2005)

Q1 The clarity of the game goals

Q2 The usefulness of the feedback

Q3 The ease of use

Q4 The usefulness of knowing crowd views

Q5 The ability to control game actions and interface

Q6 The overall engagement

Q7 The knowledge development

Q8 The required concentration

0

1

2

3

4

5

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Sc
or

e

Survey question

Neutral

Results of User Engagement

Sadeghianasl, S. Hofstede, A.H.M, Suriadi, S. Turkay, S.: Collaborative and Interactive Detection and Repair of Activity 
Labels in Process Event Logs, International Conference on Process Mining (ICPM), Padua, Italy, 2020, pp. 41-48
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Summary
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Event log imperfection patterns 
- What are they? Root causes/ effects

Detect and repair quality issues in event logs
- Timestamp, label issues

Gamification solution to detecting and repairing 
label quality issues

Goals
- Convey the importance of data quality
- To prevent them, and to understand the effect 

they can have on process mining analysis
- Make reliable decision for our organizations



Thank you

• Acknowledgement 
• QUT BPM group
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